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ABSTRACT 

 

Several studies show that up to one in four severe traffic accidents can be attributed to drowsiness. Drivers often 

over-estimate their fitness level or are not aware of the danger that always accompanies drowsy driving. 

Since associations like the NHTSA pointed to the relevance of this topic, more and more research has been 

conducted and in the meantime there is also a variety of commercial systems on the market to address this risk. 

In this paper, we do not aim to find new methods of detecting drowsiness of a driver. Our approach is rather to 

choose an established method and enhance it in a way that it not only performs well in a driving simulator but also 

in real world drives. 

The chosen drowsiness detection method is the observation of the steering wheel angle signal. It has been shown 

that the frequency of occurrence of a typical steering pattern, which can roughly be described as a deadband 

followed by a rather fast correction, is an indicator for the state of drowsiness of a driver. The advantage over other 

techniques like camera-based detection is that it can run in standard equipped cars. Thus it is available for the largest 

number of drivers and can thereby achieve the greatest effect on accident avoidance.  

We investigate the chosen detection method in real world drives and discuss which other effects not related to 

drowsiness can evoke the described steering pattern. We focus on environmental effects like crosswind and can 

show that those events may lead to an increase of the amount of steering patterns. Finally, we quantify the influence 

on drowsiness measures. The underlying database comprises more than two million kilometers of more than one 

thousand drivers, all real-world drives. 

Our evaluation shows that particularly on routes or in situations where those environmental influences accumulate, 

the drowsiness measure can be affected to an extent that leads to false triggering of the system. Therefore, we 

suggest measures that can be taken to reduce the influence of steering patterns that are not related to the driver’s 

drowsiness state.  

The aim of most drowsiness detection systems is to inform a driver when his state has reached a critical level and to 

motivate him to take appropriate measures. This presupposes confidence in the system. False warnings will 

negatively affect the credibility of the system. 

Our purpose is to show the importance of enabling this kind of system to recognize external influences, thus making 

detection more robust. We consider it very important to make such systems as reliable and credible as possible, as 

otherwise the driver will not take the advice the system will give him. Limiting the influence of external factors is a 

key to achieving this goal. 

 

INTRODUCTION 

 

Numerous reports name drowsiness and distraction as the cause of alarming numbers of accidents. The National 

Highway Traffic Safety Administration (2010) reports that in 2009 16% of all fatal crashes in the United States 

involved distracted driving. As regards drowsiness, Horne and Reyner (1995) found that 20% of all accidents on 

motorways in Southwest England to which the police was present were sleep-related. According to Langwieder et 

al. (1994), 24% of all fatal crashes in Bavaria, Germany, in 1991 happened because the driver fell asleep. NHTSA 

(Royal, 2002) reports 56,000 crashes annually to be related to drowsiness as mentioned by the police, resulting in 

1,550 fatalities. In the same report, NHTSA lists reasons why these numbers are presumed to be conservative. 

Furthermore, crashes due to drowsiness tend to have a severe outcome (Wang et al., 1996).  

The focus on the topic is still increasing. NHTSA names distracted and drowsy driving as one of the traffic safety 

problem areas (Goodwin et al., 2013) and the Euro NCAP 2020 Roadmap aims to reward manufacturers in the area 

of driver state monitoring in order to bring down the numbers of vehicles departing the road (European Car 

Assessment Programme, 2014). 



2 
 

A lot of research has been conducted in the field of drowsiness recognition and in the last years several commercial 

systems have become available on the market, using different methods. Dong et al. (2011) and Platho et al. (2013) 

give an overview of driver monitoring systems and also mention the commercial products of Ford, Mercedes-Benz, 

Volvo and VW. All those systems aim to suggest the driver to take a rest when he has reached a critical level. 

Many different algorithms were developed that analyze the driving performance, e.g. based on steering behaviour or 

lane keeping ability. These algorithms normally detect drowsiness if the driver shows an unusal driving behaviour 

(e.g. leaving the lane too often) or if the driving behaviour changes significantly from the beginning (e.g. lane 

keeping ability decreases). 

 

A problem of methods that use driving performance as criteria for drowsiness detection is that only the reaction of 

the driver can be analyzed, not the reason for certain driving manoeuvers. Attwood  (2014) mentions that systems, 

though they work in driving simulators, may fail on real roads, as they are not able to detect what the driver is 

responding to, considering environmental characteristics related to road, traffic and weather.  

 

In the present paper we discuss which environmental characteristics may have an impact on driver monitoring 

systems. In detail, the influence of crosswind and road disturbances is analyzed and it is estimated to what extent 

those events have an impact on drowsiness recognition. Finally it is shown how these external factors are taken into 

account in the system under consideration.  

The following evaluation is based on the steering wheel angle signal as the main information source. The main 

advantage of this method is that no special sensor, e.g. lane detection or driver monitoring camera, is needed. The 

steering wheel angle signal is part of the standard equipment of present-day cars. By this means, it is possible to 

integrate the drowsiness detection as a standard feature and thus reach a high number of drivers.  

 

APPROACH 

 

Steering wheel angle based drowsiness detection 

Several studies investigating the use of the steering wheel angle signal for drowsiness detection have been 

carried out. Dingus et al. (1987) found that the number of steering wheel velocities over 150deg/s is an 

indicator for drowsiness. Bouchner et al. (2006) show a positive correlation of the ratio of fast and slow 

steering corrections with drowsiness. 

 

A combination of slow and fast steering velocities is also used in this study. It is based on the Mercedes-Benz 

Attention Assist, which is a system that detects drowsiness and long-term distraction. Both kinds of driving 

impairment affect the steering behavior in a similar way. The steering pattern we evaluate consists of a 

deadband (phase without or with very slow steering) and a subsequent fast steering correction. Friedrichs and 

Yang (2010) show that this pattern correlates with drowsiness.  

In our experience, steering velocities differ widely between drivers. Therefore, several thresholds in the 

algorithm are adapted continuously during the drive and according to the behavior in the first minutes of a 

drive, when the driver is presumed to be rather awake. 

The accumulated steering pattern is the basis for the drowsiness measure. Figure 1 shows other factors that are 

taken into account to make the system more robust and useable in real road environment. 
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Figure1.  Features of the Mercedes-Benz Attention Assist. 

Situations potentially provoking steering patterns 

Friedrichs et al. (2011) identified external influences on the driving behavior. We refer to the factors listed in 

that study and cluster them as shown below.  

     Gaze direction, distraction, vehicle operation.   Factors describing different kinds of driver action. These 

include for example eating or drinking, which can lead to abnormal steering behavior as the driver does not 

operate the vehicle with both hands. It may also be the driver not keeping his eyes on the road because he is 

attending to his children on the back seat or reading messages on his smartphone. The steering patterns arising 

from these actions can be classified as indicators of distraction and are thus treated by the system in the same 

way as steering patterns evoked by drowsiness. Vehicle operations on the other hand are part of the driving 

task. They can be detected by the system and the related steering patterns can be filtered out.  

     Vehicle type/motorization, posture.   Influences that can be summarized as characteristics of the vehicle 

and  the driver. A key issue of these factors is that they normally do not change during a drive. Hence, adaptive 

systems are able to minimize the influence. 

     Rain/fog/snow, traffic density, lane width/-number, speed, curvature.   Description of the driving 

situation. An impact on the driving behavior is probable. Those situations are usually of longer duration. Some 

of these situations can easily be detected with standard sensors, e.g. speed or curvature. Others are more 

complicated to be analyzed online, e.g. traffic density. Nevertheless, as the factors are usually of longer 

duration, adaptive algorithms can react on the change in an adequate time. 

     Road condition, road bumps, crosswind, warping.   Single, strong events with sudden occurrence that 

may have immediate impact on the driving behavior. Crosswind often occurs unexpectedly, laterally displaces 

the vehicle and thus requires a fast counter-steering. Road bumps, warping or potholes can also lead to 

unintentional steering corrections. Steering corrections that potentially arise from these environmental 

influences are neither related to drowsiness nor to distraction and should therefore not be considered for driver 

state monitoring. 

In this study, we concentrate on the environmental events and investigate the influence of crosswind and road 

irregularities (road bumps, potholes) in detail. Friedrichs et al. (2011) conducted special drives for their 

evaluation in order to keep the dimension of the influences as small as possible. In the following evaluation 

real road data from naturalistic driving is used. Some restrictions were made on speed range a nd rated 
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drowsiness. Therefore, a much larger number of drives are part of the evaluation and the study of Friedrichs et 

al. (2011) is extended towards real driving situations. 

Recognition of environmental influences 

A prerequisite for all further evaluation is the ability to detect the presence of environmental influences. The 

detection of potholes and road bumps is based on an algorithm that looks for characteristics in the rotational 

speed of the wheels. The occurrence of crosswind is detected by comparing the steering angle, which provides 

information regarding the driver’s intention, to the lateral acceleration, which supplies the actual lateral 

vehicle movement. This approach of crosswind detection also includes the recognition of road warping. Often 

a mixture of road bumps and warping occurs, which means that the detection of crosswind, warping and road 

bumps is not always separable. Hence, some events are recognized by both algorithms. All signals mentioned 

are available in standard equipped cars. 

The algorithms described have been extensively proven in real world drives. For the following evaluations, the 

results of those algorithms have been used as labels for the presence of environmental influences.  

 

EVALUATION 

 

Underlying Database 

All data used comes from naturalistic drives. Driving simulator data is not included. The database comprises 

more than two million kilometers conducted by more than one thousand drivers. Self -rating of driver 

drowsiness is available for each drive. This rating has been conducted according to the Karolinska Sleepiness 

Scale (KSS) (Âkerstedt & Gillberg, 1990). Every single drive has undergone a validation process to make sure 

quality standards like consistent values of the KSS-rating are fulfilled. All drives come from Mercedes-Benz 

cars, but have been conducted in different models from the A-Class (compact car) to the S-Class (luxury large 

car). 

Evaluation of steering behavior 

Prior to the investigation of the occurrence of steering patterns, a more general look at the steering behavior 

was taken. Steering velocities were explored regarding the influence of crosswind or road bumps.  

As there are significant differences in steering behavior between individuals the analysis was conducted 

separately for single drivers. From the entire database, the ten drivers with the largest amount of recorded data 

were selected. Since Friedrichs et al. (2011) have shown that speed has a strong impact on the steering 

velocities, distributions of this signal in different speed ranges were compared for single drivers. Afterwards, 

the speed range under consideration was limited to velocities between 100km/h and 200km/h, as the signal 

values vary more at lower speeds. In addition, only parts of the drives were considered in which the driver was 

awake and alert.  

For each drive of the ten selected drivers the ratio of the presence of crosswind to the duration of the whole 

drive in the considered speed range was calculated. The lower quartile 𝑄1and the upper quartile  
𝑄3 of this ratio were then used for each driver to group his measurements into rather smooth drives (group 1) 

and drives under windy conditions (group 2). The same was done for proportions of the presence of road 

bumps and warping. Accordingly, group 1 comprises smooth drives and group 2 drives on roads with frequent 

disturbances. 

Subsequently, mean (mean) and variance (var) of the steering wheel velocity (swv) of each group of drives was 

calculated. 

Table 1 shows the results for the crosswind comparison. The calculated ratios are defined according to Eqs. (1-

2). 

 

     𝑟𝑎𝑡𝑖𝑜 𝑚𝑒𝑎𝑛 =
𝑚𝑒𝑎𝑛(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝2

𝑚𝑒𝑎𝑛(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝1
              (1) 
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        𝑟𝑎𝑡𝑖𝑜 𝑣𝑎𝑟 =
𝑣𝑎𝑟(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝2

𝑣𝑎𝑟(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝1
             (2) 

 

From the values in 𝑄1 and 𝑄3 it can be seen how much crosswind was present in group 1 and group 2. The 

interquartile range IQR shows how strong the two groups differ in their amount of crosswind. 

It can be seen from the table that driver A sticks out, having the highest ratio mean and ratio var, which means 

that the mean value of his steering velocity is higher for drives under windy conditions while also the 

distribution is spread more widely. In comparison, for driver E both ratios are still greater than one but with 

much smaller values. Hence, this driver also has higher steering velocities with a higher variance for his drives 

of group 2, but the effect is less marked than for driver A. A look at the quartiles gives an explanation for this 

difference. The value of 𝑄3, which is the threshold for drives under windy conditions, is much higher for driver 

A than for driver E, while 𝑄1 is the same for both drivers. Thus, data from more windy conditions is existent 

for driver A than it is for driver E, which results in a higher effect on the steering velocities. 

In summary, for all drivers the mean value and the variance of swv is higher for drives of group 2 than  

group 1. A look at the individual thresholds 𝑄1 and 𝑄3 and the IQR shows that this effect is stronger for 

individuals for which a greater difference in the ratio of crosswind occurrence is present. Taken together, these 

results reinforce the expectation that higher steering velocities occur with environmental disturbances.  

Table1. 

Comparison of steering velocity mean and variance for drives with different ratios of crosswind 

occurrence.    

 

Driver 

data 

selection 

number 

of 

drives  

evaluated 

time 

[min] 

mean(swv) 

[°/s] 

var(swv) 

[°/s] 

ratio 

mean 

ratio 

var 

  
𝑸𝟏 𝑸𝟑 IQR 

A Group 1 79 6369 1.00 2.17 
2.84 10.06 0.03 0.13 0.10 

 
Group 2 79 4420 2.84 21.79 

B Group 1 44 3608 1.44 4.04 
1.41 1.92 0.03 0.10 0.07 

 
Group 2 44 2751 2.04 7.75 

C Group 1 43 3879 1.38 3.18 
2.01 3.18 0.03 0.18 0.15 

 
Group 2 43 2234 2.78 10.12 

D Group 1 87 7276 1.72 4.12 
1.93 4.51 0.03 0.11 0.08 

 
Group 2 87 4668 3.33 18.56 

E Group 1 37 2942 1.27 2.86 
1.18 1.22 0.03 0.07 0.04 

 
Group 2 37 2923 1.51 3.48 

F Group 1 39 2766 1.68 4.37 
1.19 1.46 0.02 0.04 0.02 

 
Group 2 39 2832 2.01 6.38 

G Group 1 44 4110 1.09 1.94 
1.19 1.48 0.02 0.06 0.04 

 
Group 2 44 2636 1.29 2.88 

H Group 1 47 3203 1.22 2.72 
1.27 1.53 0.03 0.09 0.06 

 
Group 2 47 3017 1.54 4.14 

I Group 1 29 1768 1.28 2.64 
1.22 1.42 0.02 0.06 0.04 

 
Group 2 29 2335 1.57 3.75 

J Group 1 36 3872 1.04 1.81 
1.27 1.63 0.02 0.07 0.05 

 
Group 2 36 2346 1.32 2.95 

 

The same procedure was applied for the presence of road disturbances. The result is presented in Table 2. 

Though not as definitive as for crosswind, the findings are the same. For all drivers, both mean and variance of 

the steering velocity are higher for data of group 2, which are the drives with a high amount of road 

disturbances. The tendency of a higher portion of road irregular ities leading to higher mean values and higher 

variance of the steering wheel velocity can also be observed: driver I has the smallest IQR, which means the 
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difference of the ratio of road disturbance occurrence between his drives in group 1 and group 2 is smaller 

than for the other drivers. This explains why the mean steering velocity differs less between group 1 and group 

2 than it does for example for driver D, whose drives in group 2 feature a larger ratio of road irregularities.  

Table2. 

Comparison of steering velocity mean and variance for drives with different ratios of road bumps 

occurrence.    

 

Driver 

data 

selection 

number 

of 

drives  

evaluated 

time 

[min] 

mean(swv) 

[°/s] 

var(swv) 

[°/s] 

ratio 

mean 

ratio 

var 

  
𝑸𝟏 𝑸𝟑 IQR 

A Group 1 79 6701 1.01 2.15 
2.47 8.46 0.03 0.18 0.15 

 
Group 2 79 5487 2.51 18.22 

B Group 1 44 3040 1.53 4.20 
1.43 2.06 0.03 0.13 0.10 

 
Group 2 44 2464 2.19 8.66 

C Group 1 43 3849 1.62 3.98 
1.50 2.14 0.04 0.23 0.19 

 
Group 2 43 2504 2.42 8.54 

D Group 1 87 6853 1.82 4.47 
1.65 3.59 0.03 0.14 0.11 

 
Group 2 87 5824 3.00 16.04 

E Group 1 37 2991 1.27 2.89 
1.18 1.24 0.07 0.18 0.11 

 
Group 2 37 2875 1.50 3.60 

F Group 1 39 3068 1.76 5.01 
1.01 1.07 0.04 0.10 0.06 

 
Group 2 39 2315 1.78 5.35 

G Group 1 44 3762 1.05 1.94 
1.22 1.40 0.02 0.10 0.08 

 
Group 2 44 2160 1.28 2.71 

H Group 1 47 3542 1.33 3.28 
1.10 1.05 0.02 0.10 0.08 

 
Group 2 47 3155 1.47 3.45 

I Group 1 29 2163 1.37 3.04 
1.06 1.14 0.02 0.08 0.06 

 
Group 2 29 1859 1.46 3.45 

J Group 1 36 3647 1.05 1.92 
1.11 1.19 0.03 0.09 0.06 

 
Group 2 36 3382 1.17 2.28 

 

Evaluation of the occurrence of steering patterns 

To find out whether there are peculiarities in the number of steering patterns with the presence of crosswind, 

all time instances of onsets of crosswind in the speed range 60-200km/h were identified for 11,604 drives. 

Afterwards a time range of ten seconds before and ten seconds after those time instances was investigated for 

steering patterns. 

Figure 2 provides the cumulated result for all time instances in which crosswind was detected. Zero on the time 

axis marks the beginning of crosswind. As the duration differs, the red vertical line marks the median of the 

end of the detected crosswind. The number of steering patterns have been counted and plotted at their instant 

of occurrence, relative to the beginning of crosswind and normalized with the number of crosswind  events. As 

can be seen, in general the number of steering patterns moves around a certain level. After the onset of 

crosswind, a very strong rise can be observed. The subsequent lower amount is attributable to the violation of 

the deadband criteria caused by the counter-steering. It is apparent from this data that more steering corrections 

are produced under the influence of crosswind. 
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Figure2.  Histogram of steering patterns around crosswind events.  

The same procedure was applied for road surface irregularities. The results obtained from 11,638 drives are 

shown in Figure 3. The observation is the same as for crosswind. The number of steering patterns varies little 

around a certain level and increases strongly when road bumps occur.  It is thus confirmed that road 

disturbances can lead to steering corrections. 

 

Figure3.  Histogram of steering patterns around road disturbances. 
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Quantification of influence on drowsiness detection 

The previous evaluation proofed that environmental characteristics can evoke steering patterns. In the next step 

the dimension of the influence on a possible drowsiness measure was estimated. Based on this final evaluation 

it could be determined whether environmental influences present a severe problem or if effects are minor and 

can be neglected. 

This estimation was performed by calculating the factor by which the number of steering corrections increases 

if environmentally influenced ones are taken into account. Only data was used, in which the driven speed lay 

for at least 30min in the range of 60 to 200km/h. This led to 6075 evaluable drives. For each d rive, the ratio of 

the amount of steering corrections that were detected during the presence of crosswind to the amount of 

steering patterns that occurred when no environmental disturbances were present was calculated. The result 

shows by which factor the number of steering patterns would increase if those evoked by crosswind were 

ignored. It also represents an estimation of how much a drowsiness measure, based only on a summation of 

steering patterns, would be affected. 

The same principle was applied for the computation of the increase of steering patterns as a result of road 

disturbances. Figure 4 presents the distributions of the results for both kinds of environmental influences in a 

boxplot. A factor of increase of one means that the number of steering patterns would double by taking into 

account the environmental disturbance-evoked ones. For a better readability, only values up to 1.5 are shown. 

This was done due to some striking outliers, which may occur for special driving conditions, e.g. extraordinary 

windy conditions. 

 
 

Figure4.  Increase of number of steering patterns with environmental disturbances.  

  

The median for the factor of increase on account of crosswind lies at a value of 0.215, due to road irregularities 

at 0.258. As explained before, the crosswind recognition and the detection of road bumps may sometimes be 

effective for the same events, thus it has not to be assumed that both factors of increase would add up. But , for 

half of the drives in the existing database, a possible drowsiness measure increases by more than 20% even 

regarding only one of the influences, which may indeed lead to false warnings. The problem is less severe for 

drives under smooth conditions and more severe if more disturbances occur. Figure 5 shows that the rise of 

steering patterns and the relative amount of crosswind is highly correlated, as can be expected. The same 

observation can be made for road irregularities, as shown in Figure 6. Especially for drives under more 

extreme conditions, measures have to be taken to increase the robustness of the drowsiness recognition system 

to prevent false alarms. 
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Figure5.  Relation between amount of crosswind and 

increase of steering patterns. 

 
Figure6.  Relation between amount of road 

disturbances and increase of steering patterns. 

 

PROPOSAL OF MEASURES 

 

The evaluations show that the impact of environmental influences on steering pattern based drowsiness 

detection systems is too strong to be neglected. In the following we propose measures that increase the 

robustness as they are implemented in the Mercedes-Benz Attention Assist system.   

Masking 

In the first step, steering corrections evoked from events like crosswind or road bumps are left out of the 

estimation of drowsiness. A prerequisite for this is the possibility of recognizing such disturbing influences. 

Not to consider those steering patterns means that the system cannot evaluate the driver’s steering behavior 

during the presence of the environmental disturbance. This leads to some kind of system inactivity. Inactivity 

due to environmental influences is of short duration. Figure 2 and Figure 3 depict the median of the duration of 

disturbing environmental events, about 3.5s and 2s respectively. In our database, crosswind led to 4.3% of 

overall system inactivity, while masking due to road disturbances concerned 6.2% of all data. Both values were 

obtained from data in the speed range 60-200km/h. Hence, the inactive periods have only minor influence on 

the overall system performance. 

If the system is inactive for a long time, we recommend letting the driver know that he cannot expect it to work 

without restrictions. This is for example the case if the system works only in a certain speed range. 

Transparency, such as displaying inactivity, can lead to better understanding and thus more trust in the system.  

Adaption 

While masking is effective for determined events, another measure is needed for all non-specific influences 

that cannot be detected as single environmental events can be. Increased robustness can also be achieved by 

making algorithms adaptive, not only to the driver but also to changes in the driving situation that cannot be 

attributed to special events. For example thresholds for the recognition of steering patterns should adapt during 

the whole drive. 

 

CONCLUSIONS 

 

The purpose of the current study was to determine the necessity of making driving-performance based driver 

state monitoring systems, especially those that rely on steering patterns, robust against environmental 

influences. The results of the investigations have shown that environmental influences have a significant 
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impact on the steering behavior and can lead to steering patterns that are not related to drowsiness or 

distraction. 

It has also been found that the number of unwanted steering patterns cannot be disregarded. The influence on 

the drowsiness measure is significant, especially with higher presence of disturbances. The implementation of 

possibilities to detect environmental events and ignore the consequent steering corrections helps to achieve 

better performance of such systems in real road scenarios. The performance can be further improved by 

designing adaptive algorithms, e.g. by fitting certain parameters to the special driving situation.  

The effectiveness of drowsiness detection systems that are limited to give advice depends on the dr iver’s 

confidence. An increase in the drowsiness measure because of environmental influences can lead to false 

triggering of the system and thus to the driver not taking it seriously. 

The presented method of evaluating influence of certain events on drowsiness detection algorithms can also be 

used to study the effect of other events, e.g. certain vehicle operations. It allows estimating the s cale of the 

effect and helps deriving measures to decrease the negative consequences on the system performance. The 

method shows especially an efficient way to extract this information in a huge amount of existing real road 

data. 
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